basis problem and related properties

Yinhe Peng joint work with Stevo Todorcevic

University of Toronto

Sep 15, 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

To which extent the structure of subspaces of a given regular space X determines the topological properties of X?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

To which extent the structure of subspaces of a given regular space X determines the topological properties of X?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Can countable network be characterized in this way?

To which extent the structure of subspaces of a given regular space X determines the topological properties of X?

Can countable network be characterized in this way?

Is there a finite list \mathcal{B} of regular uncountable spaces such that every other regular uncountable space X contains a subspace homeomorphic to one space from \mathcal{B} ?

- To which extent the structure of subspaces of a given regular space X determines the topological properties of X?
- Can countable network be characterized in this way?
- Is there a finite list \mathcal{B} of regular uncountable spaces such that every other regular uncountable space X contains a subspace homeomorphic to one space from \mathcal{B} ?

ション ふゆ く 山 マ チャット しょうくしゃ

What properties are closely related to the basis problem?

The real line and the Sorgenfrey line

Theorem (Baumgartner 1973)

PFA implies that every set of reals of cardinality \aleph_1 embeds homomorphically into any uncountable regular space of countable network and that

every subset of the Sorgenfrey line $(\mathbb{R}, \rightarrow)$ of cardinality \aleph_1 embeds homomorphically into any uncountable subspace of $(\mathbb{R}, \rightarrow)$.

A regular space is Lindelöf if every open cover has a countable subcover.

An S space is a regular hereditarily separable (HS) space which is not Lindelöf.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

A regular space is Lindelöf if every open cover has a countable subcover.

An S space is a regular hereditarily separable (HS) space which is not Lindelöf.

An L space is a regular hereditarily Lindelöf (HL) space which is not separable.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem (M.E. Rudin, 1972)

It is consistent to have an S space.

Theorem (M.E. Rudin, 1972)

It is consistent to have an S space.

Theorem (Todorcevic, 1983)

PFA implies that there is no S space.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Theorem (M.E. Rudin, 1972)

It is consistent to have an S space.

Theorem (Todorcevic, 1983)

PFA implies that there is no S space.

So under PFA, an uncountable regular space either contains an uncountable discrete space or is HL.

ション ふゆ アメリア メリア しょうくしゃ

Theorem (Moore, 2005)

There is an L space.

Theorem (Moore, 2005)

There is an L space.

It turns out that the class of L spaces does not have a reasonably small basis.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Adding algebraic structure will not help:

```
Theorem (P.-Wu, 2014)
```

There is an L group.

Adding algebraic structure will not help:

Theorem (P.-Wu, 2014)

There is an L group.

Also, the class of L groups does not have a reasonably small basis.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem (Szentmiklossy, 1980)

 MA_{ω_1} implies that there are no first countable L spaces.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Theorem (Szentmiklossy, 1980)

 MA_{ω_1} implies that there are no first countable L spaces.

Question

Does PFA imply a 3 element basis for first countable regular spaces?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

HL compact

Question

Does PFA imply a 3 element basis for spaces with HL compactification?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

HL compact

Question

Does PFA imply a 3 element basis for spaces with HL compactification?

Gruenhage also pointed out that a positive answer will give positive answers to the following:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

HL compact

Question

Does PFA imply a 3 element basis for spaces with HL compactification?

Gruenhage also pointed out that a positive answer will give positive answers to the following:

Question

Is it consistent that every perfectly normal locally connected compact space is metrizable?

Question

If X and Y are compact and $X \times Y$ is perfectly normal, must one of X and Y be metrizable?

A space is submetrizable if it has a weaker topology which is metrizable.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

A space is submetrizable if it has a weaker topology which is metrizable.

Theorem (Gruenhage; MA_{ω_1})

If there is a counterexample to the basis problem (for any class closed by adding countably many open sets), then there is a submetrizable one.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A space is submetrizable if it has a weaker topology which is metrizable.

Theorem (Gruenhage; MA_{ω_1})

If there is a counterexample to the basis problem (for any class closed by adding countably many open sets), then there is a submetrizable one.

Question (PFA)

Is there a property that contains 2 HL elements and is preserved under continuous image?

Question

What property will imply submetrizable subspace? Under PFA?

What property will imply submetrizable subspace? Under PFA?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(Moore) HL does not imply submetrizable.

What property will imply submetrizable subspace? Under PFA?

(Moore) HL does not imply submetrizable.

(Gruenhage) G_{δ} diagonal + HL/paracompact implies submetrizable.

(ロ) (型) (E) (E) (E) (O)

What property will imply submetrizable subspace? Under PFA? (Moore) HL does not imply submetrizable. (Gruenhage) G_{δ} diagonal + HL/paracompact implies submetrizable. (Gruenhage) What about first countable + HL?

(ロ) (型) (E) (E) (E) (O)

What property will imply submetrizable subspace? Under PFA? (Moore) HL does not imply submetrizable. (Gruenhage) G_{δ} diagonal + HL/paracompact implies submetrizable. (Gruenhage) What about first countable + HL? (Kunen) What about spaces with HL compactification?

(ロ) (型) (E) (E) (E) (O)

(Gruenhage) For fist countable HL spaces, G_{δ} diagonal is equivalent to small diagonal.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

(Gruenhage) For fist countable HL spaces, G_{δ} diagonal is equivalent to small diagonal.

Proposition (PFA)

If a first countable HL space X is not submetrizable, then there are $\{(x_{\alpha}, y_{\alpha}) \in X^2 \setminus \Delta : \alpha < \omega_1\}$ and local bases $\{u_{x_{\alpha},n}, u_{y_{\alpha},n} : \alpha < \omega_1, n < \omega\}$ such that $u_{x_{\alpha},n}$ $(u_{y_{\alpha},n})$ splits only one pair.

Cometrizable

A topological space X is cometrizable if it has a weaker metrizable topology and a neighbourhood assignment consisting of closed sets in this weaker topology.

Theorem (Gruenhage 1987)

Assume PFA. A cometrizable space has a countable network if it contains no uncountable discrete subspace nor an uncountable subspace of the Sorgenfrey line.

For a topological space (X, τ) and a collection $C \subset P(X)$, the inner topology $(X, \tau^{I,C})$ induced by C is the topology with base $\{\{x\} \cup O^{I,C} : x \in O, O \text{ is open}\}$ where $O^{I,C} = \cup \{C \in C : C \subset O\}$.

For a topological space (X, τ) and a collection $C \subset P(X)$, the inner topology $(X, \tau^{I,C})$ induced by C is the topology with base $\{\{x\} \cup O^{I,C} : x \in O, O \text{ is open}\}$ where $O^{I,C} = \cup \{C \in C : C \subset O\}$.

Theorem (PFA)

If (X, τ) is regular and $(X, \tau^{I,C})$ is HL for some countable C, then (X, τ) either has a countable network or contains an uncountable Sorgenfrey subset.

For a topological space (X, τ) and a collection $C \subset P(X)$, the inner topology $(X, \tau^{I,C})$ induced by C is the topology with base $\{\{x\} \cup O^{I,C} : x \in O, O \text{ is open}\}$ where $O^{I,C} = \cup \{C \in C : C \subset O\}$.

Theorem (PFA)

If (X, τ) is regular and $(X, \tau^{I,C})$ is HL for some countable C, then (X, τ) either has a countable network or contains an uncountable Sorgenfrey subset.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

HL of inner topology is preserved under continuous image and perfect preimage for sub-metrizable spaces.

For a topological space (X, τ) and a collection $C \subset P(X)$, the inner topology $(X, \tau^{I,C})$ induced by C is the topology with base $\{\{x\} \cup O^{I,C} : x \in O, O \text{ is open}\}$ where $O^{I,C} = \cup \{C \in C : C \subset O\}$.

Theorem (PFA)

If (X, τ) is regular and $(X, \tau^{I,C})$ is HL for some countable C, then (X, τ) either has a countable network or contains an uncountable Sorgenfrey subset.

HL of inner topology is preserved under continuous image and perfect preimage for sub-metrizable spaces.

Proposition (PFA)

If X is first countable, regular and contains no uncountable separable metrizable or Sorgenfrey subset, then for any countable collection C, $(X, \tau^{I,C})$ is a countable union of discrete subsets.

Definition

For a topological space (X, τ) and a collection $C \subset P(X)$, the outer "topology" $(X, \tau^{O,C})$ induced by C is the collection $\{O^{O,C} : O \text{ is open}\}$ where $O^{O,C} = \cap \{C \in C : O \subset C\}$.

Definition

For a topological space (X, τ) and a collection $C \subset P(X)$, the outer "topology" $(X, \tau^{O,C})$ induced by C is the collection $\{O^{O,C} : O \text{ is open}\}$ where $O^{O,C} = \cap \{C \in C : O \subset C\}$.

Proposition (PFA)

Suppose X is a regular, HL space. Any outer topology induced by a countable collection either has a countable network or contains an uncountable Sorgenfrey subset.

Definition

For a topological space (X, τ) and a collection $C \subset P(X)$, the outer "topology" $(X, \tau^{O,C})$ induced by C is the collection $\{O^{O,C} : O \text{ is open}\}$ where $O^{O,C} = \cap \{C \in C : O \subset C\}$.

Proposition (PFA)

Suppose X is a regular, HL space. Any outer topology induced by a countable collection either has a countable network or contains an uncountable Sorgenfrey subset.

ション ふゆ く 山 マ チャット しょうくしゃ

If the outer topology guesses almost correctly, then

Definition

For a topological space (X, τ) and a collection $C \subset P(X)$, the outer "topology" $(X, \tau^{O,C})$ induced by C is the collection $\{O^{O,C} : O \text{ is open}\}$ where $O^{O,C} = \cap \{C \in C : O \subset C\}$.

Proposition (PFA)

Suppose X is a regular, HL space. Any outer topology induced by a countable collection either has a countable network or contains an uncountable Sorgenfrey subset.

ション ふゆ く 山 マ チャット しょうくしゃ

If the outer topology guesses almost correctly, then

Example. Cometrizable spaces.

Outer "topology" to covering property

Proposition (PFA)

Suppose X is a first countable regular, HL space, C is countable such that $(X, \tau^{O,C})$ is metrizable and $(X, \langle \{x\} \cup (u_{x,n}^{O,C} \setminus u_{x,n}) : x \in X \rangle)$ contains no uncountable HL subset for all n. Then X contains an uncountable metrizable subset.

Outer "topology" to covering property

Proposition (PFA)

Suppose X is a first countable regular, HL space, C is countable such that $(X, \tau^{O,C})$ is metrizable and $(X, \langle \{x\} \cup (u_{x,n}^{O,C} \setminus u_{x,n}) : x \in X \rangle)$ contains no uncountable HL subset for all n. Then X contains an uncountable metrizable subset.

Proposition (PFA)

Suppose X is a first countable regular, HL space, C is countable such that $(X, \tau^{O,C})$ is Sorgenfrey and $(X, \langle \{x\} \cup (u_{x,n}^{O,C} \setminus u_{x,n}) : x \in X \rangle)$ contains no uncountable HL subset for all n. Then for any $Y \in [X]^{\omega_1}$ and $n < \omega$, there is $Y' \in [Y]^{\omega_1}$ such that

 $[x,\infty)\cap Y'\subset u_{x,n}$ for all $x\in Y'$.

Covering property

People have considered to force properties of X from covering properties of its finite powers.

Fact (MA_{ω_1})

Suppose that X is a first countable space with covering property (**): for any $m, n < \omega$, for any $\{a_{\alpha} \in X^{n} : \alpha < \omega_{1}\}$, there are $\alpha \neq \beta$ such that for any i < n, $a_{\alpha}(i) \in u_{a_{\beta}(i),m}$ and $a_{\beta}(i) \in u_{a_{\alpha}(i),m}$. Then X contains a metrizable subspace.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Covering property

People have considered to force properties of X from covering properties of its finite powers.

Fact (MA_{ω_1})

Suppose that X is a first countable space with covering property (**): for any $m, n < \omega$, for any $\{a_{\alpha} \in X^{n} : \alpha < \omega_{1}\}$, there are $\alpha \neq \beta$ such that for any i < n, $a_{\alpha}(i) \in u_{a_{\beta}(i),m}$ and $a_{\beta}(i) \in u_{a_{\alpha}(i),m}$. Then X contains a metrizable subspace.

Question

Is it consistent that X has an uncountable metrizable subspace if X^{ω} is HL?

A weaker covering property

Definition

A first countable space X with a real ordering < has property (*) if for any $n < \omega$, for any $(m_0, ..., m_{n-1}) \in \omega^n$, for any $\{a_{\alpha}, b_{\alpha} \in X^n : \alpha < \omega_1\}$ such that $b_{\alpha}(i) \in u_{a_{\alpha}(i),m_i} \cap (a_{\alpha}(i),\infty)$ whenever $\alpha < \omega_1, i < n$, there are $\alpha \neq \beta$ such that for any i < n, $b_{\alpha}(i) \in u_{a_{\beta}(i),m_i}$ and $b_{\beta}(i) \in u_{a_{\alpha}(i),m_i}$.

A weaker covering property

Definition

A first countable space X with a real ordering < has property (*) if for any $n < \omega$, for any $(m_0, ..., m_{n-1}) \in \omega^n$, for any $\{a_{\alpha}, b_{\alpha} \in X^n : \alpha < \omega_1\}$ such that $b_{\alpha}(i) \in u_{a_{\alpha}(i),m_i} \cap (a_{\alpha}(i),\infty)$ whenever $\alpha < \omega_1, i < n$, there are $\alpha \neq \beta$ such that for any i < n, $b_{\alpha}(i) \in u_{a_{\beta}(i),m_i}$ and $b_{\beta}(i) \in u_{a_{\alpha}(i),m_i}$.

Theorem (PFA)

Assume that X is a first countable regular space with property (*) and X has no uncountable left sub-Sorgenfrey subspace. Then X contains an uncountable metrizable or Sorgenfrey subspace.

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?